

Year 2025

GHG emissions report

DSG Group

03/12/2025

Foreword


Congratulations on pursuing your climate journey. Greenly is proud to contribute to DSG Group's climate strategy, and support you on a path towards Net Zero.

This report synthesizes the results of your greenhouse gas (GHG) emissions assessment. It is a first step toward identifying reduction actions and helping you plan for the energy transition.

While offering some benchmarks to compare with other companies, a GHG emissions assessment is mainly used to identify ways to improve your global impact and to help you define a reduction trajectory. Achieving your decarbonization targets involves engaging your ecosystem of employees, customers and suppliers who will need to align with your new targets.

The evaluation of your emissions is in line with carbon accounting international standards as standardized by the GHG Protocol.

We are happy to support you on your journey. The entire Greenly team would like to thank you for your outstanding commitment.

Alexis Normand

CEO of Greenly

A handwritten signature in black ink that reads 'Alexis Normand'.

Overview

3

- 1
- 2
- 3
- 4
- 5
- 6

Introduction

- Carbon accounting methodology
- GHG emissions assessment parameters
- Executive summary

Emissions report

- Results by scope
- Results by activity
- Focus by activity

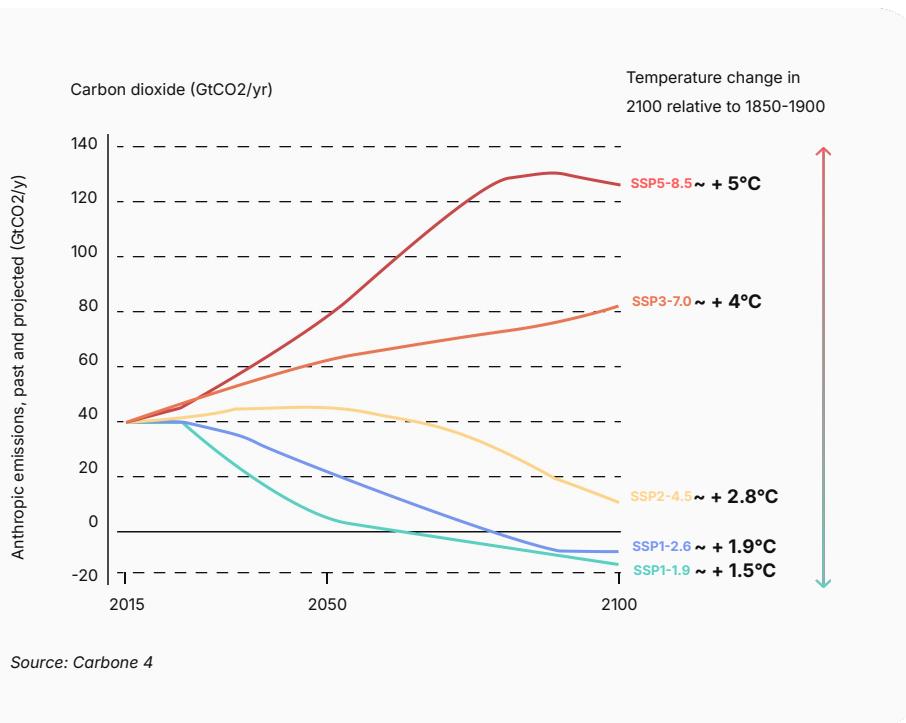
Focus on action plans

- Estimated impact
- Estimated costs
- Implementation step by step

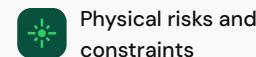
Conclusion – What's next?

- Summary of reduction actions
- Next steps

About Greenly


- Our vision & team

Appendix


- Scope 1-2 details
- Scope 3 details

Why care about the energy transition

Regardless of our management of the environmental crisis, organizations and individuals are heading towards major upheavals that will affect entire ecosystems.

Two types of disruptions

Physical risks and constraints

Transition risks and opportunities

Impacted sectors

Production

Supply chain

Market

Infrastructure

HR

Legislation

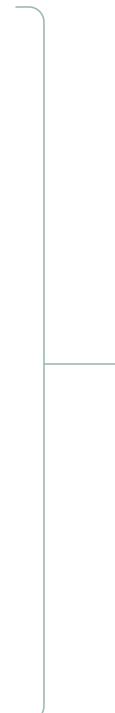
Physical risks...

Definition

Risks related to exposure to the physical consequences of global warming

Average temperature increase and more extreme fluctuation

Intensification of extreme weather events (rain, heat waves/droughts, etc.)


Sea level rise

Scarcity of resources (especially energy), food and water insecurity

Biodiversity collapse

What are the consequences if I don't commit?

- 1 Deterioration of infrastructure, value chain losses
- 2 Direct economic consequences
- 3 Low resilience to future events and physical constraints (e.g. natural disaster)
- 4 Dependence on an increasingly fragile supply chain (availability and cost of resources, flexibility, fluctuation of fossil fuels)
- 5 Disruptions in living conditions (housing, food, health, transport, etc.)

Transition risks (and opportunities)

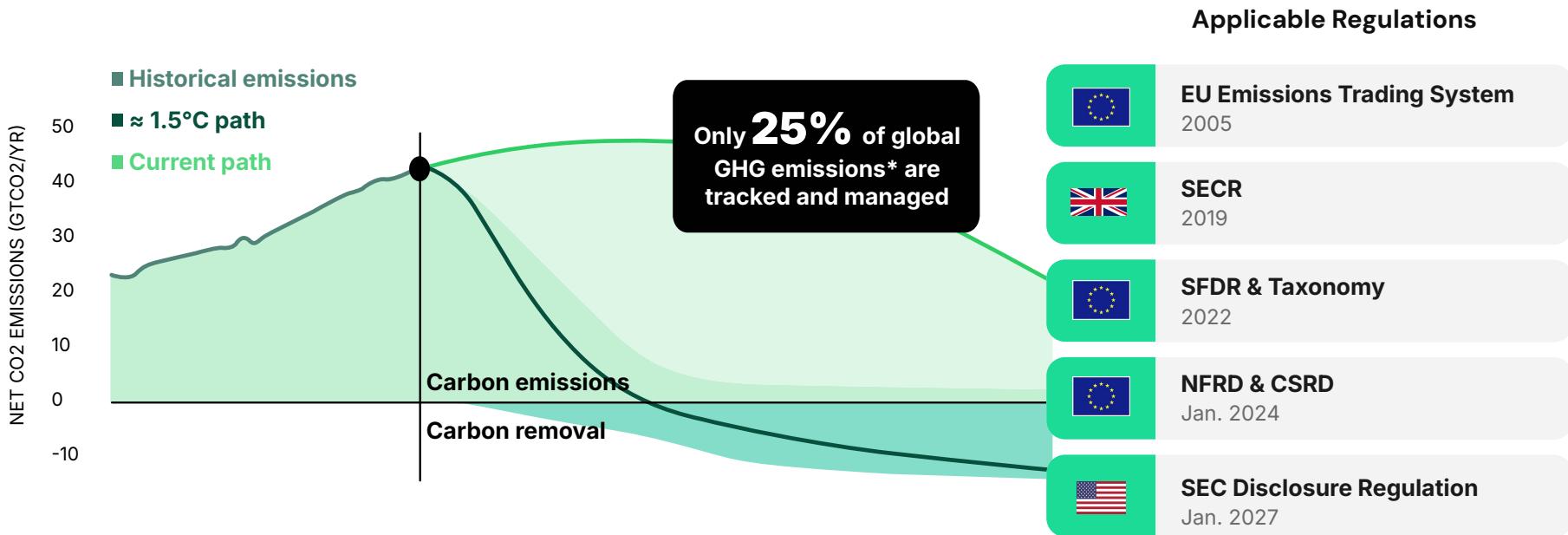
Definition

Risks related to the transition to a low-carbon economy

Regulatory developments and mitigation policies

Markets and sectors migrating towards promoting low-carbon value creation:
Opportunities to seize
Associated market risks

Growing stakeholder demands on environmental commitments


Shifting employee mindsets and expectations regarding the environmental reputation of their employer

What are the opportunities if I commit?

- 1 Optimization of flows and costs
- 2 More sustainable business activity and corporate strategy
- 3 Increased competitiveness within my ecosystem
- 4 Resilience and autonomy of activities in the face of the new socio-economic paradigm
- 5 Lower exposure to legal and financial constraints and sanctions

It is critical to set a course for Net Zero

REACHING PLANETARY DECARBONIZATION GOALS IMPLIES THAT ALL BUSINESSES TRACK THEIR EMISSIONS, REGULATIONS ARE KICKING IN

Source: *Carbon Pricing Leadership Report

Solving the Climate Equation

MEASURING EMISSIONS IS THE FIRST STEP TO SETTING A PATH TOWARDS NET ZERO

Carbon accounting methodology

Scope 1 | Direct emissions

GHG emissions generated directly by the organization and its activities.

Examples: combustion of fossil fuels, refrigerant leaks, etc.

Scope 2 | Indirect emissions related to energy consumption


Emissions related to the organization's consumption of electricity, heat or steam.

Example: electricity consumption, etc.

Scope 3 | Other indirect emissions

Emissions related to the organization's upstream and downstream operations and activities

Example: transportation, purchased goods and services, sold products, etc.

How are emissions computed?

ANALYZING EMISSIONS, AUTOMATING TRACKING

13% of your emissions of 2025 are calculated using activity data

Expense
based

Increasing
Accuracy*

Activity
based

Activity metrics x Emissions factors = CO2 Eq. Emissions

Total Expense
80€

1.75 kgCO2e/€

140 kgCO2e

Total Distance
600 km

0.2 kgCO2e/km

120 kgCO2e

Total Fuel
40 liters

2.8 kgCO2e/liters

112 kgCO2e

*depending on the availability of data

Methodological reference: ADEME note on the use of accounting data for the GHG Accounting

Emission Factor
Sources

GHG emissions assessment scopes

Entity

DSG Group

From April 2024 to March 2025

-

Primary data

Accounting data

Employee survey

Buildings data

Methodology

Official and approved GHG Protocol methodology; GWP 100

Emissions generated in and outside the country of operation are accounted for. The methodological details of the calculation of each carbon footprint source are available on the Greenly platform.

Measurement scope

All emissions under operational control

✓ Category included

○ Category excluded

✗ Category irrelevant

Scope 1

- ✗ 1.1 Generation of electricity, heat or steam
- ✓ 1.2 Transportation of materials, products, waste, and employees
- ✗ 1.3 Physical or chemical processing
- ✓ 1.4 Fugitive emissions

Scope 2

- ✓ 2.1 Electricity related indirect emissions
- ✗ 2.2 Steam, heat and cooling related indirect emissions

Scope 3

- ✓ 3.1 Purchased goods and services
- ✓ 3.2 Capital goods
- ✓ 3.3 Fuel- and energy- related activities not included in Scope 1 or Scope 2
- ✓ 3.4 Upstream transportation and distribution
- ✓ 3.5 Waste generated in operations
- ✓ 3.6 Business travel
- ✓ 3.7 Employee commuting
- ✓ 3.8 Upstream leased assets
- ✗ 3.9 Downstream transportation and distribution
- ✗ 3.10 Processing of sold products
- ✗ 3.11 Use of sold products
- ✗ 3.12 End-of-life treatment of sold products
- ✗ 3.13 Downstream leased assets
- ✗ 3.14 Franchises
- ✗ 3.15 Investments

General overview

KEY RESULTS – 2025

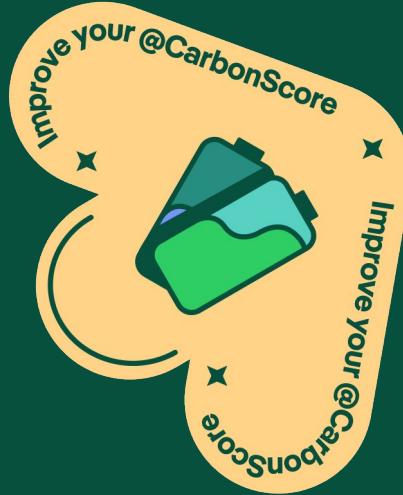
Absolute

1.1k
tCO2e

Per employee

5.4
tCO2e

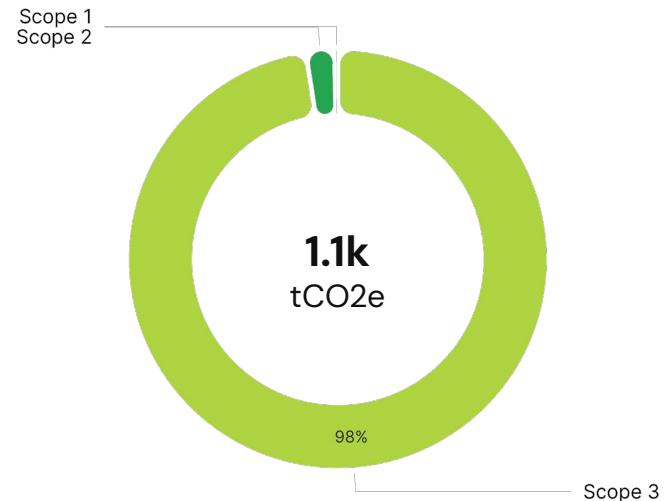
Employee number : 210


Per revenue (M)

27
tCO2e

Revenue : 42M€

This report summarizes the results of DSG Group's 2025 GHG emissions assessment based on the information collected and subject to its completeness, correct categorization and validation.

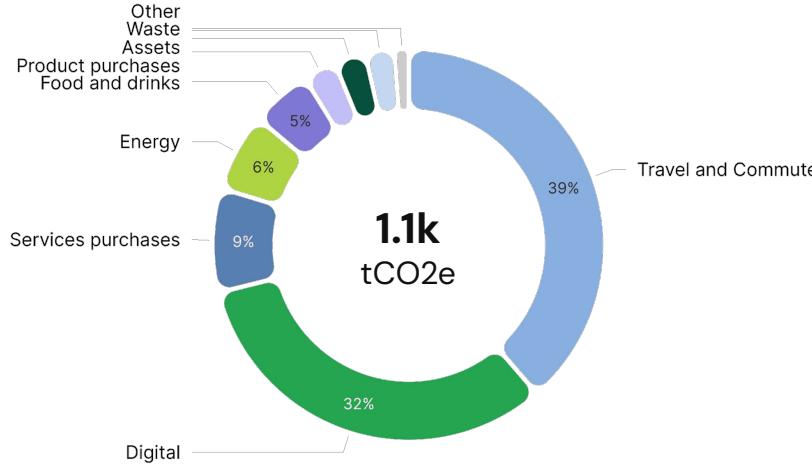


Emissions Report

General overview

BREAKDOWN BY SCOPE – 2025

	Scope 1	Scope 2	Scope 3
Absolute tCO2e	2.6	25	1.1k
Employee tCO2e/employee	< 0.1	0.1	5.3
Revenue tCO2e/M€	< 0.1	0.6	26



Results subject to the correct categorization and validation of expenses of DSG Group.

General overview

RESULTS BY ACTIVITY

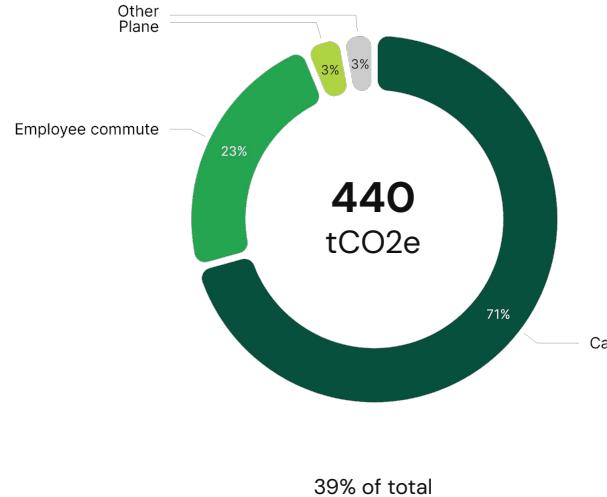
Total emissions of DSG Group, by activity (% tCO2e)

Is equivalent to:

The amount of CO2 sequestered annually by 103 hectares of growing forest*

The annual emissions of 93 British people*

661 London - New York round trips*


	Absolute tCO2e	Per employee tCO2e/employee
Travel and Commute	440	2.1
Digital	369	1.8
Services purchases	97	0.5
Energy	73	0.3
Food and drinks	57	0.3
Product purchases	31	0.1
Others**	70	0.3

*Sources: Labos1Point5, ExioBase, French National Forests Office

**Assets, Waste, Activities and events, Freight

Focus on Travel and Commute

Travel and Commute emissions by category (% tCO2e)

Activity data
101 tCO2e (23%)

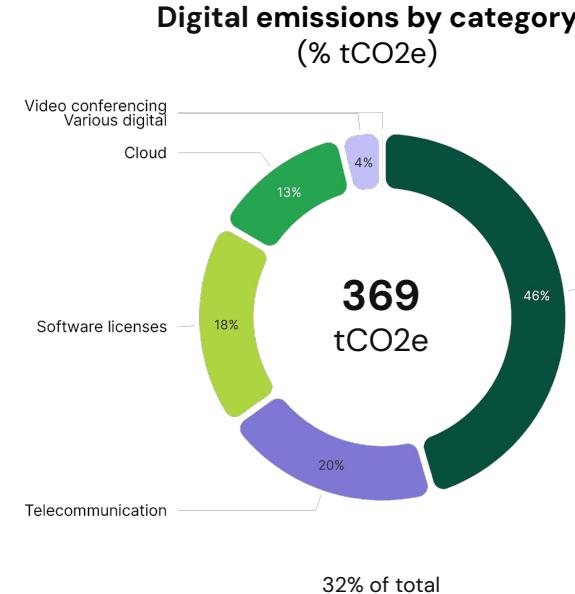
Expense data
338 tCO2e (77%)

What is included in this category?

CO2 emissions from travel and commuting, covering various transportation modes. Includes direct fuel combustion and indirect fuel production emissions.

How to reduce the impact of this category?

You can adopt the following measures:


- Promote low carbon commuting means
- Favor the train for national travel of employees instead of car travels
- Replace part of your business travel with video conferencing

See additional best practices in the action plans section

Methodology

1. Emissions calculated using activity and expense data, by multiplying a quantity by an emission factor.
2. The emission factors used for this category come from the following databases: Exiobase 3.8.2, Greenly 1.0, UK GHG Conversion Factor 2025
3. Details of the methodology used to calculate each carbon footprint source are available on the Greenly platform.

Focus on Digital

Activity data
0 tCO2e (0%)

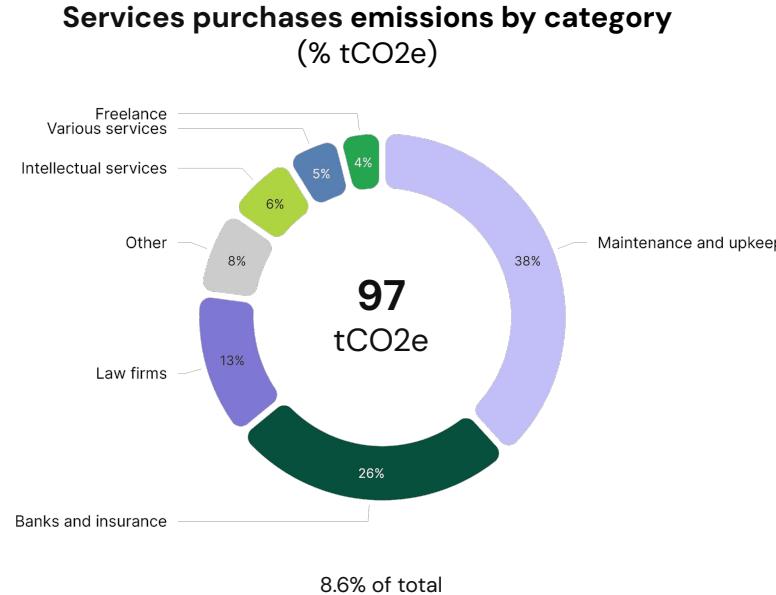
Expense data
369 tCO2e (100%)

What is included in this category?

CO2 emissions from digital activities, covering internet use, data storage, and cloud computing. Includes emissions from data centers, servers, and network infrastructure.

How to reduce the impact of this category?

You can adopt the following measures:


- Optimize the cloud resources used
- Define limits for asset quality according to the final terminal used
- Improve the workload of the servers

See additional best practices in the action plans section

Methodology

1. Emissions calculated using expense data, by multiplying a quantity by an emission factor.
2. The emission factors used for this category come from the following databases: Company Report 1.0, Exiobase 3.8.2, Greenly 1.0
3. Details of the methodology used to calculate each carbon footprint source are available on the Greenly platform.

Focus on Services purchases

Activity data
0 tCO2e (0%)

Expense data
97 tCO2e (100%)

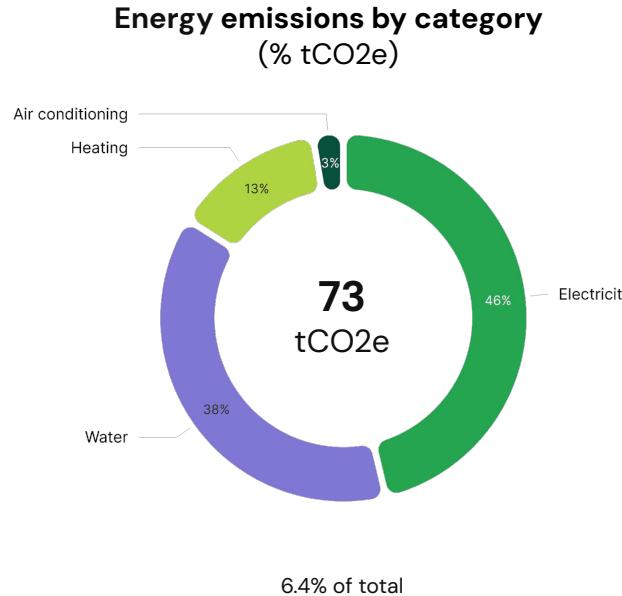
What is included in this category?

CO2 emissions from service purchases, covering professional services. Primarily from upstream energy/material use and energy consumed during service provision.

How to reduce the impact of this category?

You can adopt the following measures:

- Implement carbon impact conditions in your service purchase policy
- Evaluate your supplier's climate maturity
- Precise scope 3 emissions with supplier-specific emission factors


Methodology

1. Emissions calculated using expense data, by multiplying a quantity by an emission factor.
2. The emission factors used for this category come from the following databases: Company Report 1.0, Exiobase 3.8.2
3. Details of the methodology used to calculate each carbon footprint source are available on the Greenly platform.

Focus on Energy

Activity data
46 tCO2e (62%)

Expense data
28 tCO2e (38%)

What is included in this category?

CO2 emissions from energy production and consumption, covering fossil fuels and renewables. Varies by energy source type, efficiency, and carbon intensity.

How to reduce the impact of this category?

You can adopt the following measures:

- Implement an energy savings program
- Implement an energy management system

Methodology

1. Emissions calculated using activity and expense data, by multiplying a quantity by an emission factor.
2. The emission factors used for this category come from the following databases: Base Empreinte Ademe 23.7, Exiobase 3.8.2, Greenly 1.0, Greenly 2023, IEA 2024
3. Details of the methodology used to calculate each carbon footprint source are available on the Greenly platform.

Focus on buildings

Focus on buildings

ACTIVITY ANALYSIS

Total emissions per category (tCO2e)

Activity emissions

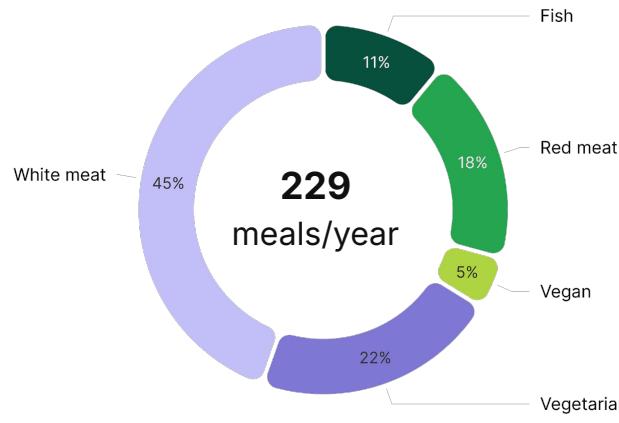
0 tCO2e (0%)

Estimated emissions

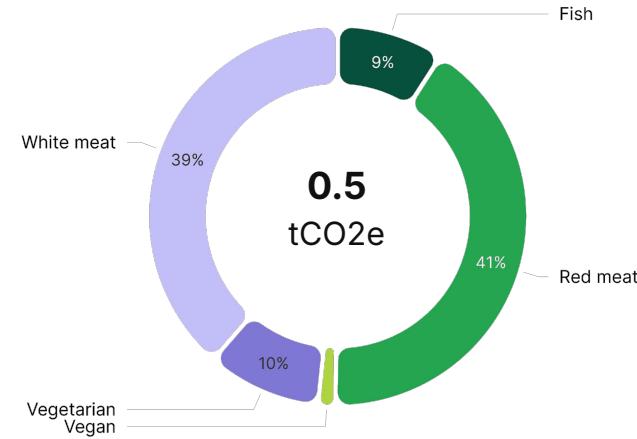
35 tCO2e (100%)

Total emissions per building (tCO2e)

Methodology


1. Emissions linked to heating and energy use are calculated by multiplying (where available) the building's electricity or gas consumption by an emission factor. Failing this, an estimate is calculated on the basis of building surface area, or even the number of employees when surface area is not provided.
2. Waste-related emissions are estimated on the basis of the number of employees.
3. Air-conditioning emissions correspond to refrigerant leaks (average estimate).

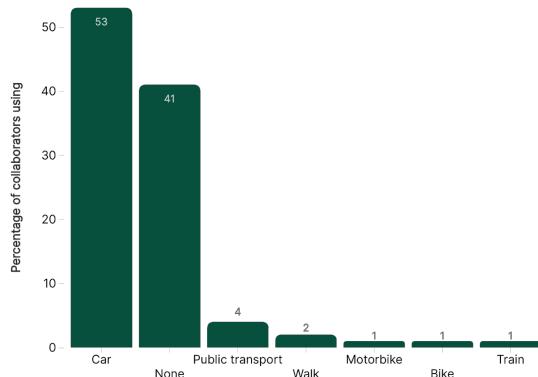
Focus on employees



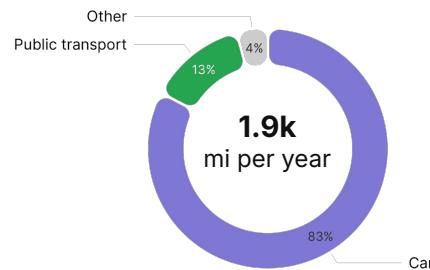
Focus on Employee Meals

Number of meals per employee per year
(per diet)

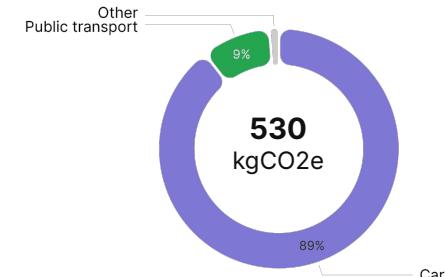
GHG emissions
(tCO2e / employee)



Methodology


Analysis is based on the employee survey, which obtained a 96% response from your employees to whom the questionnaire was sent (182 responses). The data used to calculate meals-related emissions are from the French Agency for Ecological Transition (ADEME). Meal emissions are not accounted for, this slide is only an analysis of the responses to the employee survey.

Focus on Employee Commute


Usage of transport modes

Yearly mean distance distribution

GHG emissions (kgCO2e / employee)

On average, your employees travel 1.9k mi each year, emitting 530 kgCO2e for home-work commuting.

Methodology

Analysis is based on the employee survey, which obtained a 96% response from your employees to whom the questionnaire was sent (182 responses).

The data used to calculate commute-related emissions are from the French Agency for Ecological Transition (ADEME).

More details on the [employees page](#) of Greenly

Focus on Action Plans

How can I implement effective reduction actions?

To meet global targets, emissions will have to fall by **3 to 7% per year***. It's a tough target, but a necessary one!

WHAT ARE THE BEST PRACTICES FOR ACHIEVING THESE OBJECTIVES?

COMMUNICATE the results of your GHG assessment to all your teams so that they are on board with the process of reducing emissions.

INVOLVE management and find internal sponsors responsible for implementing reduction actions.

ENGAGE your ecosystem (suppliers and customers) and ask about their reduction strategy, in order to prioritise virtuous suppliers.

INCREASE your teams' awareness of climate change using our platform to alert and facilitate the implementation of your reduction actions.

These first steps will enable you to maximise your chances of success in implementing reduction actions.

WHAT REDUCTION MEASURES CAN MY COMPANY TAKE?

The reduction actions we recommend are selected with:

AMBITION

Some actions involve major changes, but they will bring you closer to achieving the global climate targets.

REALISM

The action plans are based on practical examples already implemented in other pioneering companies.

EFFICIENCY

Implementing them will have a real impact on your emissions in the short and long term.

Travel and Commute

Favor the train for national travel of employees instead of car travels

Travel

Regional trains emit 3.6 times less CO2 than internal combustion cars. High-speed trains emit 45 times less CO2 than combustion cars. What's more, colleagues can work on their computers during the train journey, and generally arrive in the city centre, close to public transport.

Benchmark

SAP has implemented a comprehensive travel and transportation policy that encourages employees to use trains for regional and national travel. They provide tools and resources to help employees plan and book train journeys effectively to reduce emissions and promote sustainable travel practices.

Siemens, a global technology company, has actively promoted the use of trains for business travel. They encourage employees to choose trains over cars, especially for short- and medium-distance trips.

Estimated Impact

Up to a 75% reduction in emissions.

Estimated Cost

Although trains can currently be more expensive than individual cars, this balance might shift as fuel prices are expected to soar. Additionally, you need to incorporate the work time saved into the equation.

Implementation

1

SUBSTITUTE travel by teleconference meetings when conditions allow.

2

IDENTIFY routes that can be replaced by rail.

Reduce the size of your vehicle fleet

Travel

By improving monitoring of vehicle use, or developing car-sharing, it is possible to reduce the number of vehicles needed.

Benchmark

Nash tec estimates that 1 shared vehicle could replace 3 service vehicles.

Estimated Impact

The reduction depends on the number of vehicles cut

Estimated Cost

Reducing the vehicle fleet size help cutting fuel and maintenance costs, in addition to the positive carbon impact

Implementation

- 1 AUDIT the distance covered by each vehicle, to identify under-utilized vehicles
- 2 IMPROVE the attribution system to maximize the utilisation rate of vehicles
- 3 SHARE tools and good practices around your fleet management

Promote low carbon commuting means

Travel

Private transport associated with daily commuting is one of the world's biggest sources of GHG emissions. To deal with this issue, individual car use must be limited. Active modes of transport (walking and cycling), public transport, and shared mobility (carpooling and car-sharing) should be prioritized. To encourage it, you can raise awareness about alternative transportation options and provide infrastructure, facilities, and financial incentives to support these modes. Consider the possibility of your employees commuting responsibly to work when changing locations of workplace.

Benchmark

Arcadis has implemented a comprehensive strategy to address mobility, focusing on six key areas. This approach has resulted in a 49% reduction in carbon emissions related to transportation within a span of nine years. The company relocated all of its offices to main train stations, enabling easy access to public transport for employees. Additionally, every employee received a mobility card, which facilitates the use of public transport and shared bike and car services.

Estimated Impact

Using a bike instead of a car for short trips reduce travel emissions by ~75%.
Taking a train instead of a car for medium-length distances cut emissions by ~80%.

Estimated Cost

Potential costs associated with investment in infrastructures and subsidies.
Savings from lower reimbursement levels for fuel commuting.

Implementation

1 SET UP and track your KPIs (e.g., reduced car usage, lower commuting emissions).

2 Create and execute a mobility plan using case studies (e.g., Arcadis) and recommendations
[https://www.mass.gov/doc/guide book/download](https://www.mass.gov/doc/guide-book/download)

3 SOLICIT employees feedback through surveys, suggestion boxes, or dedicated feedback sessions to gather insights and address concerns.

Replace part of your business travel with video conferencing

Travel

By promoting the use of video conferencing instead of direct travel, your business travel CO2 emissions will be significantly reduced. This is the main reason why overall emissions were particularly low during the COVID period!

Benchmark

Microsoft has been actively promoting the use of video conferencing and reducing business travel. In a blog post, they shared that they have saved millions of dollars in travel expenses and reduced carbon emissions by using Microsoft Teams for meetings and collaborations instead of traveling to different locations.

Accenture, a global professional services company, has recognized the environmental impact of business travel and actively encourages the use of virtual meetings.

Estimated Impact

While the costs of these meeting forms depend on many factors such as distance traveled, meeting duration, and the technologies used, we find that video conferencing takes at most 7% of the energy/carbon of an in-person meeting. Emissions are thus reduced by more than 90%.

Estimated Cost

Given online meeting solutions are already in place for most companies, no additional cost comes from this measure.

Implementation

1

IDENTIFY the routes that can be avoided and agree with the different actors of the meetings on a video conferencing solution.

2

ESTIMATE the carbon and monetary savings from avoiding transportation.

3

AGREE with partners/colleagues who usually meet in person to schedule the video conference meeting.

Digital

Optimize the cloud resources used

Digital

Idle resources are virtual machines (VMs) and instances being paid for by the hour, minute or second, that are not actually being used 24/7. Typically, these are non-production resources being used for development, staging, testing and QA. VMs consume electricity to power the CPU, memory, and other components, which generates emissions. The power consumption of a VM depends on factors like the instance type, CPU utilization, memory usage, etc. Idle or underutilized VMs can still consume significant power and contribute to emissions, even when not actively running workloads.

Benchmark

Google Cloud Platform (GCP): GCP offers features and best practices to help customers optimize their cloud workloads for sustainability. For batch workloads that are flexible in terms of when they run, GCP recommends running them at times that coincide with lower grid carbon intensity. GCP encourages minimizing idle cloud resources, as idle or over-provisioned resources create unnecessary emissions and costs.

Estimated Impact

Savings are directly linked to the amount of resources saved.

Estimated Cost

CAPEX: N/A
YEARLY OPEX: Variable
Time to ROI: N/A

Implementation

1

Refer to your service provider to identify idle VMs.

2

Refer to your service provider to see how to configure idle VM recommendations.

3

Monitor and evaluate to ensure emissions reduction.

Recommended Service Providers

Platform.sh, Microsoft AZURE, Amazon Web Services (AWS), Google Cloud Platform (GCP)

Define limits for asset quality according to the final terminal used

Digital

The weight of assets displayed is the main driver of digital ads emissions. Emissions grow exponentially with the chosen quality. Adapting the maximum displayed quality to the user terminals is thus key to reducing emissions. For instance, videos designed for phones could have a quality limited to 720p.

Benchmark

In 2021, L'Oréal tested several cost reduction measures on 9 of its 50 major brands in France. These measures included strategic planning of advertisements to reach consumers at the most opportune moment, and targeting the most suitable advertising platforms and formats. These initiatives, among others, resulted in campaign optimization of 40% and improved completion rates owing to the increased efficiency of the new formats.

Estimated Impact

Reduces the amount of data that needs to be transmitted and stored, leading to lower CO2 emissions from the servers and network infrastructure involved in delivering and keeping the ads.

Up to a 50% reduction in CO2 emissions per campaign.

Estimated Cost

Potential costs related to investment in software tools and service providers. Long-run cost savings related to, for example, reduced storage costs, energy efficiency, optimized assets load resulting in a better user experience.

Implementation

1 PERFORM a specific marketing study to identify campaigns that could be targeted by this measure. Try out different quality over different media at the office to define acceptable quality limits.

2 ASK your creative agency to make differentiated content based on the defined quality limits.

3 ENSURE quality reduction does not affect campaign performance by performing A/B testing.

Improve the workload of the servers

Digital

The average cloud server has a workload of 40%. Improving this workload to 60% can reduce the number of "physical" servers needed, hence their emissions. This can be achieved by sharing the resources between clients, or by smoothing load peaks. Savings are directly linked to the amount of server's hour saved.

Benchmark

AWS, GCP, Azure: Cloud providers offer services on-demand, sharing hardware between several customers. This leads to a higher average workload per server, and lower the number of servers needed for the same computation power used.

Platform.sh: Platform.sh optimize the on-demand servers by sharing their power between even more customers, achieving a workload close to 100% on some services.

Estimated Impact

Reduction potential: variable

Estimated Cost

CAPEX: N/A
YEARLY OPEX: Variable
Time to ROI: N/A

Implementation

1

Assess cloud usage efficiency.

2

Compare reduction potential and incurred costs of workload optimization options.

3

Monitor and evaluate to ensure emissions reduction.

Improve your advertisement targeting

Digital

An advertisement that fails to reach its intended audience wastes energy and emits unnecessarily. An effective lever to avoid these effects, is to improve advertising delivery quality by continuing industry efforts to optimize ad visibility and reduce ineffective impressions. These efforts, which are often still limited to campaigns purchased on a cost-per-thousand-impressions (CPM) basis, must be extended to other buying models such as cost-per-click (CPC), cost-per-action (CPA), cost-per-install (CPI), and so on. This can be facilitated by relying on programmatic targeting.

Benchmark

In 2021, l'Oréal implemented a strategic planning of advertisements to reach consumers at the most opportune moment, and targeting the most suitable advertising platforms and formats. These initiatives, among others, resulted in campaign optimization of 40% and even improved completion rates.

Over the course of three years and through approximately thirty campaigns, Heineken has reduced its emissions by 20% by implementing specific strategies, including improving their targeting.

Estimated Impact

Emissions reduction is directly proportional to the reduction in the number of impressions of each campaign.

Estimated Cost

Targeted campaigns have a slightly higher cost than untargeted ones, depending on the criterias defining the audience.

Recommended Service Providers

Greenly can provide further insight into your current marketing emissions and shifting possibilities through a dedicated study. Contact your current provider to explore targeting options.

Implementation

1 ANALYSE the performance of your past marketing campaigns to find weak spots and opportunities for better future targeting.

2 PERFORM A/B testing to determine whether other targeting options would affect your campaign performance.

3 IMPLEMENT the new set of target and measure your global performance improvements.

Services Purchases

Implement carbon impact conditions in your service purchase policy

Services Purchases

Procuring products and services often contributes to a significant portion of a company's emissions, with supply chains accounting for over 80% in consumer companies. To effectively address this issue, incorporating eco-conditions criteria into your company's procurement policy offers a straightforward and efficient strategy. To ensure suppliers' climate maturity, engage them through the Greenly Feature, facilitating a comprehensive understanding of their Climate Maturity. These criteria can be implemented with current suppliers and incorporated into the supplier selection process for new contracts.

Benchmark

In 2020, several companies joined forces to launch the 1.5°C Supply Chain Leaders with the Exponential Roadmap initiative. It involves management commitment to work with suppliers to halve their GHG emissions before 2030, establishing public targets, and supply chain GHG mapping and prioritization.

Estimated Impact

Increased visibility into the carbon footprint of your suppliers and the ability to implement diverse eco-conditions within your purchasing policy can yield a significant impact on your scope 3 emissions in the long run.

Can serve as a catalyst to encourage other industries to embark on decarbonization efforts.

Estimated Cost

Variable depending on the resulting changes in the supply chain.

Implementation

1

LAUNCH the Greenly Sustainable Survey to assess suppliers' climate maturity and align their practices with your sustainability goals

2

SET and TRACK KPIs with Greenly dashboards: monitor suppliers' GHG emissions, Paris Agreement 2030 alignment, and SBTi certification.

3

Recommended Service Providers

Map the climate maturity of your Service Providers: Understand your supplier climate actions and maturity with the Greenly Procurement module

Evaluate your supplier's climate maturity

Services Purchases

The first step to creating a sustainable purchase strategy is engaging suppliers, which is crucial for reducing Scope 3 emissions. This addresses significant environmental impacts throughout the supply chain. By collaborating to improve supplier sustainability practices, companies can effectively lower their overall carbon footprint. Aligning with global climate goals through supplier engagement enhances corporate reputation and prepares businesses for evolving regulatory landscapes. This proactive strategy ensures comprehensive emissions reduction and promotes sustainable business practices.

Benchmark

In 2020, several companies joined forces to launch the 1.5°C Supply Chain Leaders with the Exponential Roadmap initiative. It involves management commitment to work with suppliers to halve their GHG emissions before 2030, establishing public targets, and supply chain GHG mapping and prioritization.

Estimated Impact

Enhancing visibility into the carbon footprint of your suppliers and integrating diverse eco-conditions into your purchasing policy can significantly reduce Scope 3 emissions over time. This approach can also serve as a catalyst, encouraging other industries to embark on their own decarbonization efforts.

Estimated Cost

Variable depending on the resulting changes in the supply chain.

Recommended Service Providers

Map the climate maturity of your supply chain: Understand your supplier climate actions and maturity with the Greenly Sustainable Procurement module

Implementation

- 1 LAUNCH the Greenly Sustainable Survey to assess suppliers' climate maturity and align their practices with your sustainability goals
- 2 USE Greenly dashboards to track KPIs like supplier carbon assessments, alignment with Paris 2030 goals, and SBTi certification.
- 3 SUPPORT suppliers with tools, training, and resources. Recognize efforts and report their progress toward achieving objectives.

Precise scope 3 emissions with supplier-specific emission factors

Services Purchases

Enhancing GHG emission precision is crucial. By adopting supplier-specific emission factors and GHG transaction-based approaches, companies can accurately measure and reduce Scope 3 emissions. This method ensures detailed emission data, supporting informed decision-making and environmental accountability. Benefits include fostering sustainable practices, enhancing supply chain resilience, and bolstering corporate reputation. Use the Greenly tool to engage suppliers and obtain data for tailored emission factors. Precise GHG data empowers ambitious reduction targets, aligning with global climate goals, and leading in sustainability practices.

Benchmark

Livent emphasizes the monitoring and reduction of GHG emissions by its suppliers. As part of the pre-qualification process, Livent assesses suppliers' willingness and ability to meet their requirements through a survey, and reviews answers periodically to ensure adherence.

Estimated Impact

Enhancing visibility into the carbon footprint of your suppliers and integrating diverse eco-conditions into your purchasing policy can significantly reduce Scope 3 emissions over time. This approach can also serve as a catalyst, encouraging other industries to embark on their own decarbonization efforts.

Estimated Cost

Variable depending on the resulting changes in the supply chain.

Recommended Service Providers

Map the climate maturity of your Service Providers: Understand your supplier climate actions and maturity with the Greenly procurement module

Implementation

- 1 USE Greenly's Sustainable Procurement Tool to IDENTIFY suppliers. Access our Supplier-Specific EF database for precise GHG Scope 3.
- 2 ENGAGE YOUR SUPPLIERS: If specific EFs aren't available, the tool helps request this crucial information (Exclusively for Service Providers).
- 3 VERIFICATION & AUDITABILITY: After obtaining supplier information, we conduct an audit to verify data. Approved audits integrate EF into the GHG

Energy

Implement an energy savings program

Energy

Quick and without major investments, actions such as turning off lighting during periods of closure and improving lighting efficiency by deploying LED or low-energy lighting, as well as presence-based management, will allow for an immediate reduction of your electricity consumption and expenditure.

Benchmark

IKEA implemented a comprehensive lighting efficiency program in stores and distribution centers, including the use of LEDs, motion sensors, and daylight harvesting to reduce energy consumption and improve the shopping experience for customers. Hilton implemented both a lighting control system in hotels that automatically turns off lights in unoccupied rooms and LED lighting throughout their properties to reduce energy use.

Estimated Impact

Lighting represents on av. 20% of the energy consumption of a typical office building.

Turning-off lighting: impact equivalent to the % reduction in lighting time.

Deploying LEDs: 50-70% emission reduction compared to traditional lighting technos.

Estimated Cost

Average of 5 \$ per LED light bulb, save 10 \$ per LED light bulb per year, as savings typically outweigh investment costs (lower electricity bills). Presence-based light management: price can range between 100 to several K\$ depending on space covered. Energy savings help mitigating costs after a few years.

Implementation

1 CONDUCT an energy audit of the lighting system to quantify energy usage and areas for improvements / potential savings

2 DEVELOP a lighting plan and KPIs such as Lighting hours per day and Number of LED lights / Total lights

3 IMPLEMENT the plan and follow the KPIs as well as the returns on investment

Implement an energy management system

Energy

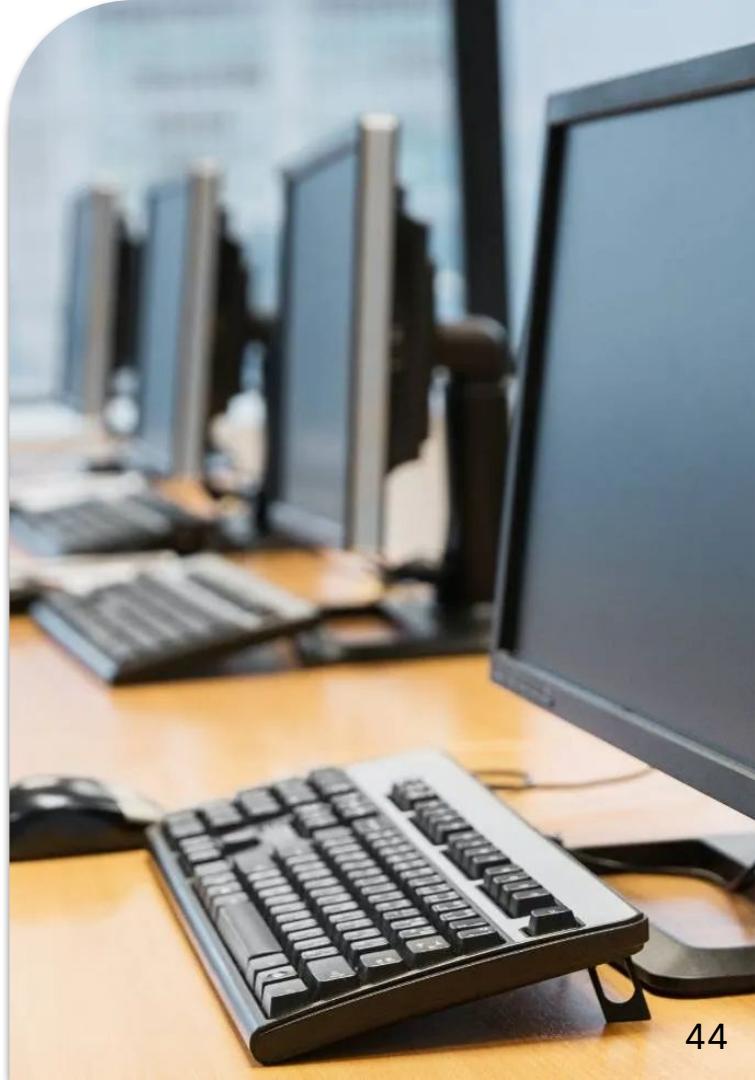
An EMS is a software-based system used to monitor and control energy consumption within a real estate property. It can be used to track energy inefficiencies and increases in energy consumption.

Benchmark

Walmart uses an Energy Management System in all its store to reduce its consumption.

Estimated Impact

At company level, the implementation of environmental management system (EMS) help to save 90% of energy consumption, reduce 63% of C&D waste and reduce 70% of water consumption.


Estimated Cost

In North America, the cost of implement an EMS is between \$30,000-\$60,000 the first year but reduces consequently the following years.

Implementation

- 1 IDENTIFY specific energy monitoring and tracking needs.
- 2 COMPARE different EMS.
- 3 MONITOR consumption throughout the year and implement energy saving solutions.

Assets

Limit the renewal of your IT equipment

Asset

While it's important to regularly update this equipment to ensure functionality, companies should also consider the environmental impact of device renewal policies. Renewing devices solely for image or standardization purposes, rather than necessity, contributes to e-waste and increases carbon emissions. Additionally, some companies provide employees with more equipment than necessary for completing their tasks, or equipment that's redundant with personal equipment that could be used in a professional setting (headphones, mouses, screens, etc.).

Benchmark

Evernex took measures to eradicate ephemeral hardware and unnecessary equipment and replace them with long-lasting, trusted systems that maximize resources and reduce carbon footprint.

Estimated Impact

Emission reduction in both assets (fewer purchases of IT equipment) and energy (fewer appliances in the offices). Depending on companies, between 10% and 25% of total IT purchases could be avoided.

Estimated Cost

Only cost savings thanks to lower IT expenditure.

Implementation

1 ESTABLISH and start monitoring your KPIs (ex. percentage decrease in new equipment acquisition per employee).

2 DEVELOP a device management policy that outlines guidelines for the management of digital devices, with purchase, maintenance, and replacement.

3 PROMOTE the concept of sufficiency among employees by highlighting its importance in minimizing waste and reducing environmental impact.

Set up a system for recovering and reusing used work equipment.

Asset

Implementing a system for recovering and reusing used work equipment reduces the company's carbon footprint by minimizing the emissions associated with the production of new equipment. This approach, focused on extending the lifespan of existing goods, promotes a circular economy while generating savings, enhancing the company's image and contributing to responsible waste management. Adopting this initiative demonstrates the company's commitment to sustainability and reducing its carbon footprint.

Benchmark

Google has introduced a program called the "Take Back Program" which allows employees to return their old work clothes for recycling. They have also adopted a more relaxed dress code policy, encouraging more moderate consumption.

IKEA encourages a more sustainable approach to fashion by providing sustainable work uniforms and exploring solutions to extend the life of its employees' clothing.

Estimated Impact

The implementation of a system for the recovery and reuse of used work equipment is estimated to have a significant positive carbon impact. By reducing the manufacture of new equipment, this action contributes directly to the reduction of greenhouse gas emissions throughout the life cycle, thus promoting a more sustainable and responsible approach to the environment.

Estimated Cost

The estimated cost of setting up a system to recover and reuse used work equipment varies according to the size and complexity of the company. Despite potential initial investments, long-term economic benefits, such as savings on the purchase of new equipment, can offset these costs.

Implementation

1 VALUE the quantity of materials that could be recovered. Consider volume, associated emissions and market impact.

2 CONDUCT a study to see how to set up a recovery and reuse system.

3 SEARCH for suppliers who can meet your materials collection and recycling needs.

Conclusion

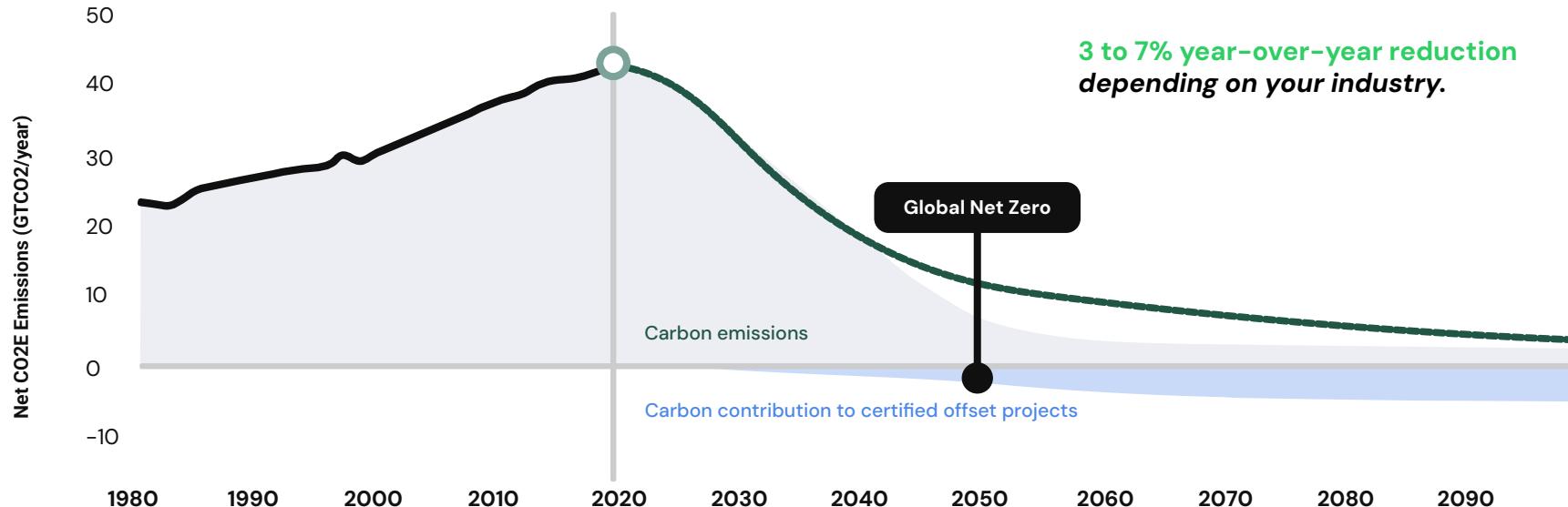
Conclusion

The GHG assessment made it possible to identify DSG Group's main GHG emission sources so as to frame the company's carbon strategy and identify the items that need to be studied in greater depth with the aim of continuously improving the company's environmental impact.

It has been established that direct emissions (Scope 1) and energy-related indirect emissions (Scope 2) represent a small part of a company's impact. It is therefore essential to mobilize our company's suppliers and employees.

To meet the 2015 Paris Agreement target of a 50% reduction in GHG emissions between 2020 and 2030, we need to achieve a 6.7% reduction in emissions within one year (-76 tCO2e).

The recommended next steps in DSG Group's carbon strategy are:

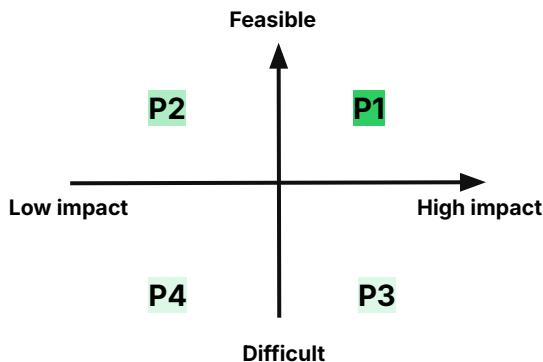

- 1 Study key emission sources in greater depth**, if you opt for that. Your Climate Expert can help you decide between the different options available!
- 2 Establish GHG emission reduction targets and implement an action plan** in order to achieve these targets.
- 3 Engage your suppliers** using the Greenly supplier engagement tool.
- 4 Engage your employees** using the interactive Greenly training quizzes.
- 5 Communicate with your stakeholders** about your commitment and carbon footprint, your reduction targets and the action plan considered.
- 6 Contribute to certified GHG reduction / sequestration projects** available on the Greenly platform.

What's next?

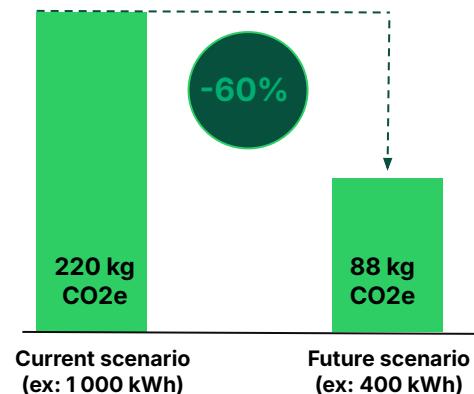
Committing to a multi-year decarbonization strategy

A SUSTAINED EMISSIONS REDUCTION BASED ON THE LEVELS REQUIRED BY THE PARIS AGREEMENT

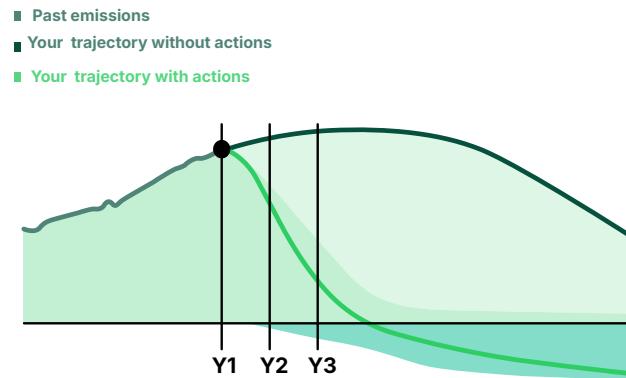
How can I build my reduction trajectory?


THE 4 KEY STAGES IN DEFINING AND FOLLOWING YOUR TRAJECTORY

Refine your greenhouse gas emissions assessment


Your 2025 assessment is based on **13%** of physical data, the rest being financial data. We recommend that you regularly improve the accuracy of your greenhouse gas assessment by adding more physical data. You will be able to quantify and monitor your reductions with precise targets in km, kg, kWh, etc.

Prioritize your actions


Place your actions on the matrix after identifying operational constraints in consultation with your teams.

Calculate their reduction potential

Select the right KPIs before you start, then calculate the reduction potential.

Monitor your results

Monitor your progress regularly and measure your results during your annual GHG assessment.

| The 5 Pillars of a Climate Strategy

DISCOVER THE 5 PILLARS BASED ON THE NET ZERO INITIATIVE

1. Measure

- Track emissions annually
- Go deeper in the analysis of your main emission sources

[Carbon data analysis](#)

[CSRD](#)

[LCA](#)

2. Reduce

- Choose an action plan in line with the Paris Agreement
- Quantify your action plan to build a carbon trajectory

[Action Plan Tab](#)

3. Educate

- Engage your suppliers in your strategy
- Train your employees

[Supplier engagement](#)

[Employee training](#)

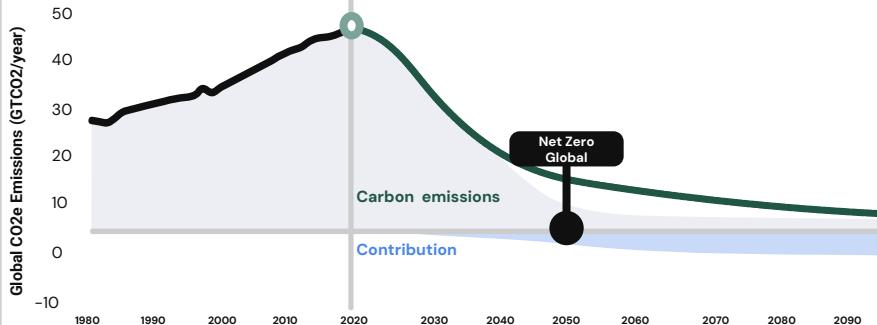
4. Commit

- Commit to an objective
- Communicate transparently

[Communication kit](#)

5. Contribute

- Contribute in carbon sequestration & avoidance projects to cover non compressive emissions


[Carbon contribution](#)

Commit to a Multi-year Carbon Trajectory

A LONG-TERM REDUCTION IN EMISSIONS IN LINE WITH THE OBJECTIVES OF THE PARIS AGREEMENT OR YOUR PERSONAL OBJECTIVES

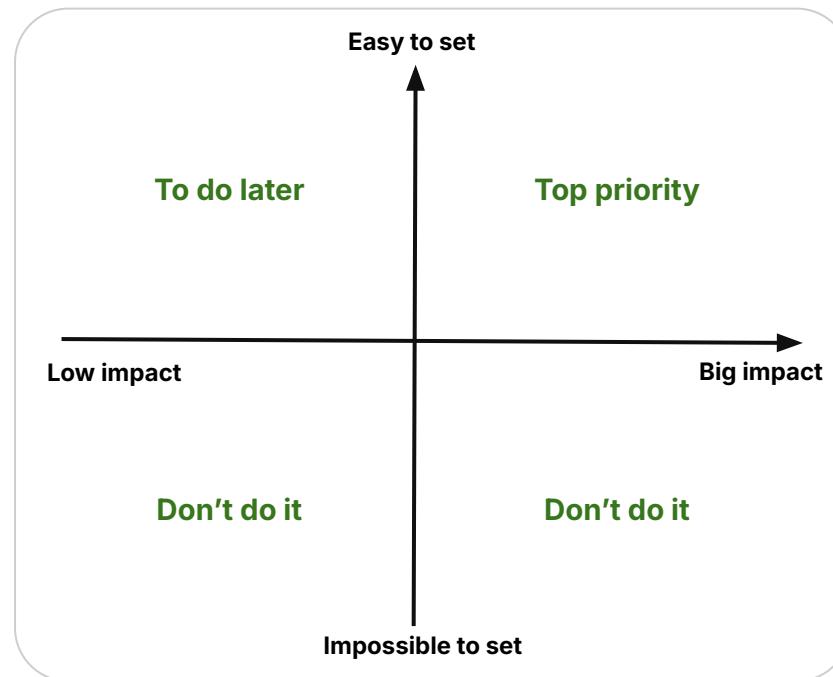
Paris Agreement Objective

-3% to -7% reduction annually

Objective Based on your Actions

Define your reduction objective based on facilitating actions

Build Your Carbon Reduction Trajectory


3 KEY STEPS TO BUILD YOUR TRAJECTORY

Prioritize your actions

Calculate their reduction potential

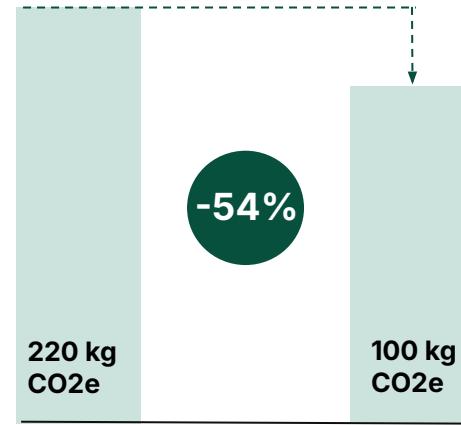
Optimize your trajectory

- 1 Bring together the stakeholders in your climate strategy
- 2 Place the action suggestions from the Greenly report on the matrix after identifying their constraints
- 3 Keep all feasible actions and prioritize those with the greatest impact

Build Your Carbon Reduction Trajectory

3 KEY STEPS TO BUILD YOUR TRAJECTORY

Prioritize your actions


Calculate their reduction potential

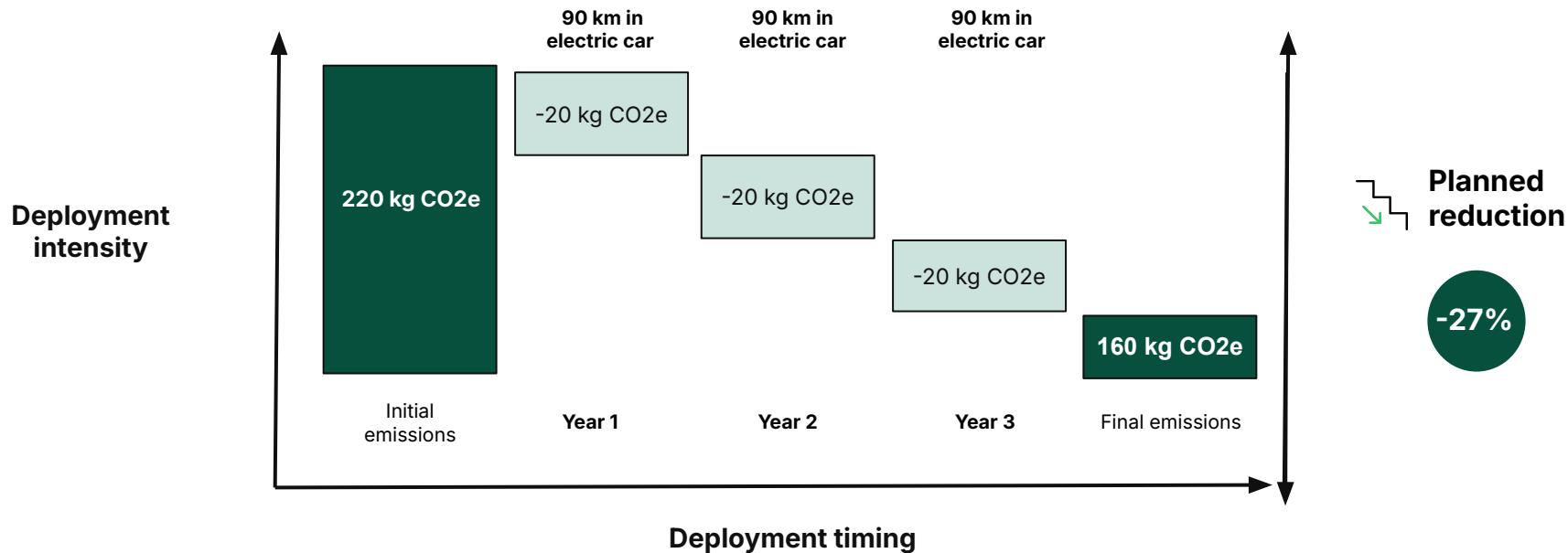
Optimize your trajectory

Current scenario	1,000 km per year with thermal cars	1,000 km per year with electric cars	Future scenario
Emission Factor	0.22 kg CO2e/km	0.1 kg CO2e/km	Emission Factor
Total Emissions	220 kg CO2e	100 kg CO2e	Total Emissions

Potential reduction

Current scenario

Future scenario


Build Your Carbon Reduction Trajectory

3 KEY STEPS TO BUILD YOUR TRAJECTORY

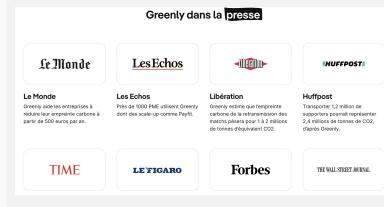
Prioritize your actions

Calculate their reduction potential

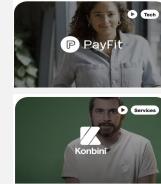
Optimize your trajectory

Greenly's communication support to highlight commitment

Company & Personal Certificates



Social Networks

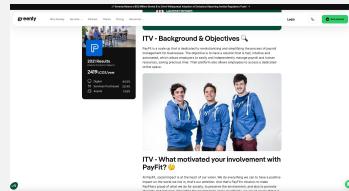

PR

Communicate on media

Customer Video Testimonials

Testimonials showcasing the work done with Greenly

Premium

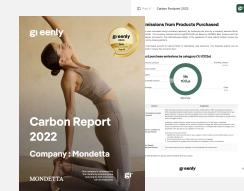

Join our community: ESG Connect

Slack Channel, afterwork, Events, Webinars

350k Members
As of August 2023

10+ Countries
including USA, UK, France, Australia etc.

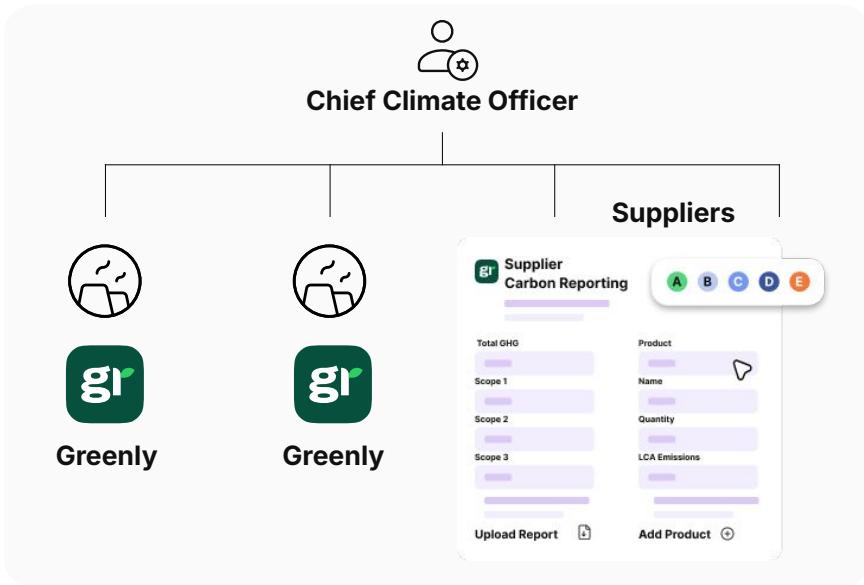
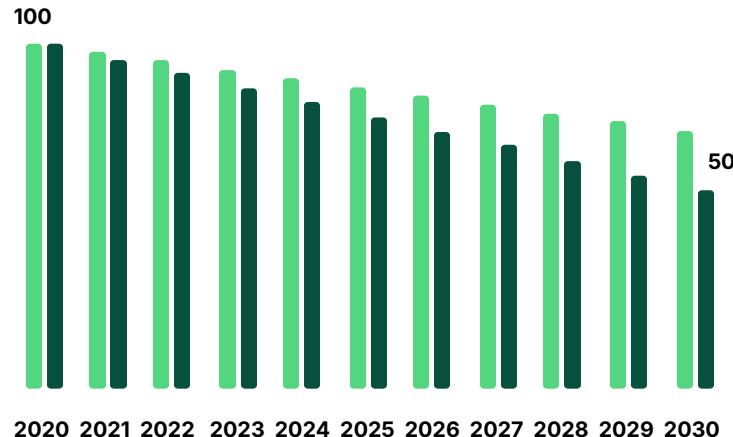
Case studies


Webinar

Communicate on your results in a Webinar with a Greenly expert!

Extended Report

Get your report formatted by our marketing team

Engaging suppliers to align with the company's Net Zero targets

ENGAGE SUPPLY CHAIN VIA A DEDICATED SUSTAINABLE PROCUREMENT STRATEGY

Reduction Trajectory Science Based Targets
Aligned with 1.5°C & Well below 2.0°C

Maturity of climate strategy

YOUR GREENLY CLIMATE SCORE

Greenly score criteria

Pioneers in the climate transition
< 1% of companies (Score ≥ 75)

Responsible companies
5% of companies (Score 55 - 74)

Building a company in transition
15% of companies (Score 30 - 54)

Beginners committed to the transition
30% of companies (Score 5 - 29)

Enthusiasts to awaken
10% of companies (Score 0 - 4)

Lack of interest in the climate
40% of companies

The statistics are drawn from the Greenly supplier and customer database, which includes several thousand companies of all sizes, sectors and geographies. For more similar statistics, consult the CDP [corporate climate tracker](#).

The intermediate Greenly Climate Score of DSG Group is 29 points

Points are distributed as follows:

Creating & fine-tuning the Greenhouse Gas report: **26/40**

Action plans: **0/36**

Climate targets: **0/4**

Involving your teams: **3/10**

Carbon contributions: **0/10**

The Score will be updated at the Climate Strategy follow-up meeting.

More information on the Score calculation method [here](#)

Statistics were computed on the Greenly supplier database

Engaging employees on Climate Change

OUR MONTHLY TRAININGS

Month 1

Month 2

Month 3

Month 4

Month 5

Month 6

Month 7

Month 12

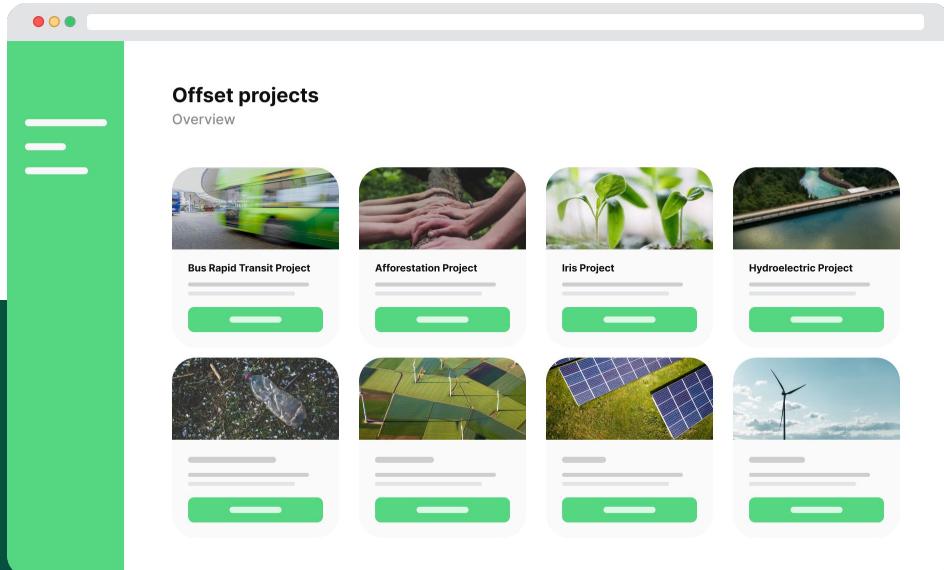
Onboarding

Quiz 1
Climate
Science

Quiz 2
IT

Quiz 3
Food

Quiz 4
Transport


Quiz 5
Energy

And more..

A look back
on the year

Net Zero Contribution – What to Expect

SOURCING ONLY VERIFIED & CERTIFIED PROJECTS

Ensure projects are certified

We source projects that meet criteria of additionality, permanence, auditability and measurability

Contribute to Net Zero

Ensure you are responsible for more emissions capture than what your organization is emitting

LABEL BAS
CARBONE

r!verse. Gold Standard®

Become a Referral Partner

Refer customers to Greenly and use your commissions to reduce the cost of your future GHG reports.

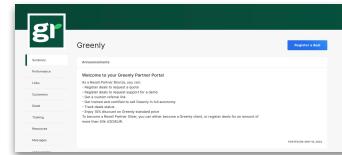
10% 15%

Commission or partner discounts directly more advantageous for Greenly customers.

1

2

3


COMMUNICATE

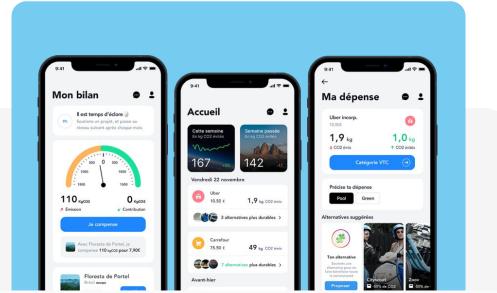
Leverage our resources to communicate to your network

REFER LEADS

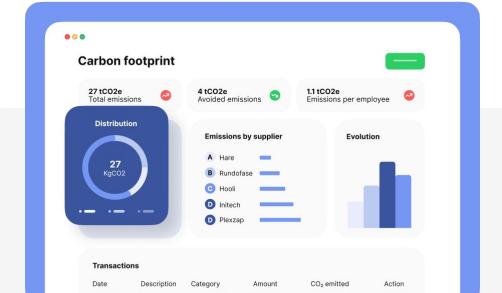
Send leads to the Greenly Sales Team

EARN REVENUE

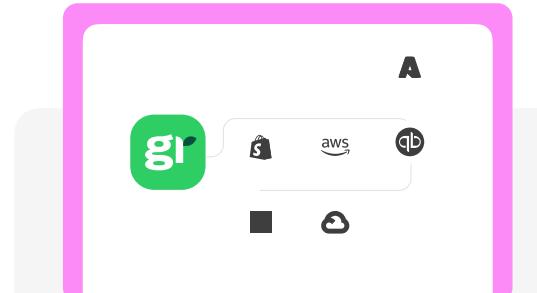
Receive quarterly payments for your business and amortize the cost of your future reports


greenly

About Greenly


The Greenly Vision

MAKING CARBON ANALYTICS UNIVERSAL


CARBON FOOTPRINT APP & API

First carbon fintech app launched

CARBON ACCOUNTING SOFTWARE

Launch B2B SaaS for SME Carbon Footprint (GHG Protocol)

CLIMATE APP STORE

Introducing the first Climate App Store in 2023

Building up a global tech leader to scale carbon accounting

FOUNDER VISION: HELPING ALL COMPANIES START THEIR CLIMATE JOURNEY TO FAST-TRACK THE ENERGY TRANSITION

Arnaud Delubac
CMO & Co-Founder

Alexis Normand
CEO & Co-Founder

Matthieu Vegreville
CTO & Co-Founder

INSEEC, Essec - Centrale
Digital Comm at Prime Minister
Office, & Ministry of Digital

HEC, Sciences-Po
Ex Head of B2B & Boston
Office at Withings, Techstar
w/Embleema

Ecole Polytechnique -
Telecom
Ex Data Science
& B2B SaaS at Withings

2018-2019

withings 2013-2018

techstars 2018-2019

Everyone should strive to achieve Net-Zero, not just the elite.
Consumers want all companies to implement sustainable changes

Greenly is instigating a bottom-up climate revolution making it simple for all companies & employees to start their climate journey

Working with our initial 1,000 customers, we see that early adoption of carbon initiatives boosts growth and profitability, while helping companies start their climate journey

As regulations make carbon disclosure mandatory, Greenly is building highly-scalable tech to address the enormous influx of mid-market businesses joining the energy transition.

Greenly's product-led growth rests on three pillars: 1- a tech-enabled end-to-end carbon platform ; 2- an outstanding UX to cultivate a growing community of climate leaders: 3- Lastly, a global ecosystem of partners who leverage Greenly to scale carbon accounting over their network.

Greenly is the world's fastest growing carbon management platform

WE ARE SCALING OUR TECH, OUR CUSTOMERS BASE & CLIMATE TEAM

150+

Team with Climate Experts Data Scientists, Data analysts, Data Engineers, DevOps Engineers

1000+

Customers in Tech, Industry, Energy, Logistics, Construction, Real Estate etc.

50k

Emissions sources aggregated from customers & industry databases

10+

Geographies covered with customers in the US, UK, France, Italy, Germany, Nordics...

These companies are tracking their carbon footprint with Greenly

Industries

faurecia

HUTCHINSON

RENAULT

TEVVA

Schlumberger

Tech

alma

ZOOPLA

Tripadvisor

PayFit

Konbini

Retail

bel^{for all for Good}

COURIR

LVMH

PERNOD RICARD

Pernod Ricard

Services

ACCOR

Capgemini

Kéa
partners
for transformation

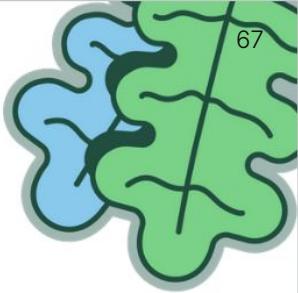
M
Mediometrie

econocom

Finance

COATUE

Shell
Ventures


AXA

EIFFEL
INVESTMENT GROUP

BNP PARIBAS

Scientific council

INDUSTRY, AI & CLIMATE EXPERTS

Pr. Michel
BAUER

Nicolas
HOUDANT

Peter
FOXPENNER

Pr. Yann
LEROY

Pr. Antoine
DECHEZLEPRÊTRE

Pr. Rodolphe
DURAND

Sociologist
HEC
-
Corporate organisation

CEO
Énergies demain
Ex
GreenNext

Professor
BU University
-
Electricity grids
& Carbon expert

Professor
CentraleSupélec
-
Carbon Product
Life-Cycle

Professor
LSE
-
Climate change
policies

Professor
HEC
-
Corporation
transformation

Appendix

Disclaimer

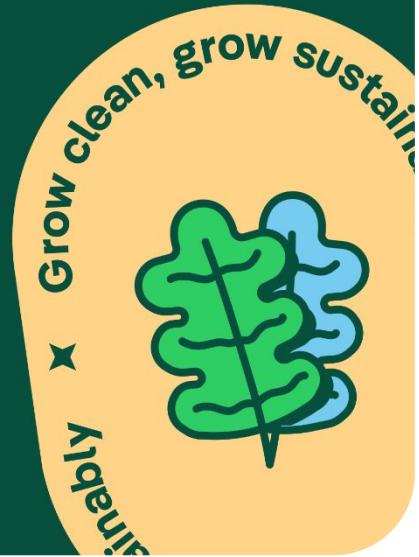
These quality controls were not automatically passed by the current carbon footprint. However, DSG Group reviewed them and decided to carry on with the generation of the carbon footprint. You can see the full detail on [the platform](#).

Greenly expert requested changes	Quality check name	Justification
No	Avoid double counting: Duplicated emissions in Activity and Financial Data	I do not believe these are duplicates.
No	Building emissions should be based on actual consumption data	We are happy with the data supplied.
No	Ensure consistent categorization for similar transactions across years	I am satisfied in the overall accuracy of our categorization.
No	Ensure the accuracy of your top 5 emission sources	We are happy with the data supplied.
No	Inconsistencies in number of Employees	We have home and field based staff who do not work out of the buildings regularly.
No	Non-validated emission categories in financial data	
No	No sub-category should exceed 10% of total emissions	We are happy with the data supplied.
No	Significant Year-over-Year Change in Electricity Consumption	I see no error in calculations
No	Significant Year-over-Year Quantity Variation	This is a normal variation depending on timings.
No	Significant Year-over-Year Quantity Variation	We have made a huge decrease in online advert spend.

i

This table displays only 10 quality controls, you can see the rest of them in the platform.

Scope 1&2



Scope	Name	tCO2e	
1.1	Generation of electricity, heat or steam	-	EXCLUDED : Category is not relevant for the company
1.2	Transportation of materials, products, waste, and employees	1	
1.3	Physical or chemical processing	-	EXCLUDED : Category is not relevant for the company
1.4	Fugitive emissions	1	
2.1	Electricity related indirect emissions	25	
2.2	Steam, heat and cooling related indirect emissions	-	EXCLUDED : Category is not relevant for the company

To see more details of the methodology for each regulatory entry please visit [Greenly!](#)

Scope 3

100% accounted

Scope	Name	tCO2e	
3.1	Purchased goods and services	598	
3.2	Capital goods	31	
3.3	Fuel- and energy- related activities not included in Scope 1 or Scope 2	9	
3.4	Upstream transportation and distribution	0.5	
3.5	Waste generated in operations	27	
3.6	Business travel	326	
3.7	Employee commuting	112	
3.8	Upstream leased assets	8	
3.9	Downstream transportation and distribution	-	EXCLUDED : Category is not relevant for the company
3.10	Processing of sold products	-	EXCLUDED : Category is not relevant for the company
3.11	Use of sold products	-	EXCLUDED : Category is not relevant for the company
3.12	End-of-life treatment of sold products	-	EXCLUDED : Category is not relevant for the company
3.13	Downstream leased assets	-	EXCLUDED : Category is not relevant for the company
3.14	Franchises	-	EXCLUDED : Category is not relevant for the company
3.15	Investments	-	EXCLUDED : Category is not relevant for the company
4.1	Other emissions - Emissions from biomass (soil and forests)	-	EXCLUDED : Category is not relevant for the company

Scope 1&2

Scope	tCO2e	tCO2b	CO2f*	CH4f*	CH4b*	N2O*	Other GHGs*
1.1	-	-	-	-	-	-	-
1.2	1	0	0.9	0.1	0.03	0.3	0
1.3	-	-	-	-	-	-	-
1.4	1	0	0	0	0	0	1
2.1	25	0	22	1	1	1	0
2.2	-	-	-	-	-	-	-

* Results expressed in tons of CO2e

Scope 3

Scope	tCO2e	tCO2b	CO2f*	CH4f*	CH4b*	N2O*	Other GHGs ⁷³
3.1	598	0	517	53	0	20	8
3.2	31	0	31	0.03	0	0.01	0.005
3.3	9	0	6	2	0.09	0.6	0
3.4	0.5	0	0.4	0.04	0	0.03	0
3.5	27	0	20	2	0	5	0
3.6	326	0	283	22	0	21	0
3.7	112	0	95	8	0.3	8	0.2
3.8	8	0	8	0	0	0	0
3.9	-	-	-	-	-	-	-
3.10	-	-	-	-	-	-	-
3.11	-	-	-	-	-	-	-
3.12	-	-	-	-	-	-	-
3.13	-	-	-	-	-	-	-
3.14	-	-	-	-	-	-	-
3.15	-	-	-	-	-	-	-
4.1	-	-	-	-	-	-	-

* Results expressed in tons of CO2e

Contact us

support@greenly.earth

www.greenly.earth